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Abstract 

 

        Key to successful protein structure prediction is a potential that recognizes the native 

state from misfolded structures. In this thesis, we introduced a novel way to extract 

interaction potential functions between the 20 types of amino acids, which used the 

Modified Hypenetted Chain (MHNC) and the Reverse Monte-Carlo (RMC) method. We 

extract Radial Distribution Functions (RDFs) from 996 known protein crystal structures 

from the Protein Data Bank, and using these RDFs we were able to first generate the 

potential-of-mean-force (PMF) for different pairs of residues, and then we improved these 

PMFs by including the higher order terms of the Ornstein-Zernike equation using an 

iteration that starting from the HNC approximation for the pair interaction potential, and in 

each of the follow step, we conducted Monte-Carlo simulations to generate the RDFs for 

the updated potential. The updated potentials in each iteration step can be generated either 

using MHNC or the RMC method.   These effective pairwise potentials  were then 

summed up to obtain the total energy score for known protein structures, and their 

effectiveness was validated by conducting single and multiple decoy set tests using the „R‟ 

Us decoy set. 
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Chapter I.  Introduction 
 

 

Proteins are the most important biomolecules for biologists. A well defined protein potential 

function is useful to solve many important protein structure problems. For example, current 

prediction approaches to protein structure are based on the thermodynamic hypothesis that the 

native structure is at the lowest free energy state  under physiological conditions [1]. A potential 

that can discriminate between the native and misfolded structures is crucial for any protein 

structure approaches to be successful.  

 

It is generally accepted that native conformations of proteins correspond to the structures of 

lowest free energy. As a result, successful potential functions, including most of those based on 

native structures, should give the lowest free energy for the native conformations. However, it 

has been shown that classical semi-empirical potentials such as CHARMM [2], cannot always 

distinguish the non-native folds of proteins from their native structures. Novotny and co-workers 

[3] also demonstrated that a conventional molecular mechanics potential cannot accurately 

discriminate native protein structures from misfolded ones. Therefore, developing such a 

potential (or scoring function) that could successfully discriminate between native structure/non-

native structure or correct configurations/incorrect configurations, is still remained a difficult 

task.                  

 

For years, various algorithms have been developed to construct the protein potential energy 

prediction models. Two different types of potential energy functions are currently in use [4-9]. 

The first class of potentials, the so-called physical-based potential, is based on the fundamental 

analysis of forces between atoms [2, 10]. For example, there is the so-called molecular 

mechanics potential energy functions (MM-PEFs), which incorporate both the „bonded‟ and 

„non-bonded‟ terms. The bonded terms apply to sets of four atoms that are covalently linked, and 

they serve to constrain bond lengths and angles near equilibrium values. The bonded terms also 

include a torsional potential that models the periodical energy barriers encountered during bond 
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rotation. The non-bonded terms consist of the Lennard-Jones (LJ) function (which includes van 

der Waals attraction and repulsion owing to orbital overlap) and Coulomb‟s law. The parameters 

of the bonded and non-bonded terms of an MM-PEF are derived from quantum calculations or 

from thermodynamic data on a wide range of systems [11, 12]. MM-PEFs have been used 

predominantly to simulate protein folding and dynamics, but are also used to refine X-ray crystal 

structures [13].  

 

For physics-based models, the advantage is that they can be derived based on physical laws; 

the disadvantage is that the calculation of free energy is very difficult because this computation 

should include an atomic description of the protein and the surrounding solvent. Currently this 

type of computation is generally still too expensive for structure predictions. 

 

 The second class, the so-called knowledge-based potentials, extracts parameters from 

experimentally solved protein structures. This type of energy function is derived from the 

database of known protein structures [14, 15, 16]. The probabilities that atomic groups/residue 

appears in specific configurations or the probabilities that pairs of atomic groups/residuals appear 

together in a defined relative geometry are calculated. These probabilities are then converted into 

an effective potential energy function using the Boltzmann probability equation, which will be 

discussed in more details later in this chapter. The advantage of knowledge-based energy 

functions is that they can model any behaviors seen in known protein crystal structures, even if a 

good physical understanding of the behavior does not exist. The disadvantage is that these 

energy functions are phenomenological and cannot predict new behaviors absent from the 

training set. Since most knowledge-based models could avoid ab initio and atomic level 

calculations for structure prediction, therefore within today‟s computer resources, knowledge-

based potentials are generally easier to be used for folding recognition, compared to the physics-

based potentials.  
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While the physics based protein potentials have become fairly standardized, knowledge-

based design potentials vary enormously between laboratories [13]. The various terms are 

typically calibrated and weighted to optimize performance for one type of prediction, such as 

experimental binding energy [17, 18], or in some other cases, used to produce native-like 

sequences when redesigning natural proteins [19].  For example, in Dwyer et al „s paper [20] a 

de novo triosephosphate isomerase activity was designed using an accurate electrostatics model 

which included multiple geometry-dependent dielectric constants [21]. Another example is the 

93-residue protein with a new α/β fold designed by Kuhlman et al [19]. In their potential energy 

function, an LJ term (with well depths from CHARMM19 and radii fit to match the distribution 

of distances seen in the PDB) was included, together with a Lazaridis-Karplus empirical 

solvation term [22], a knowledge-based hydrogen-bonding term [23], a knowledge-based 

rotamer term and a knowledge-based pairwise interaction term. The scaling factors for each term 

were adjusted in order to optimize the native sequences when redesigning a training set of 30 

proteins.   

 

Some other efforts in knowledge-based potential design include Crippen [24] and Maiorov 

& Crippen [25], who tried to empirically fit a set of parameters that corresponded to potential 

energies between certain residue groups which separated on different distances. In their work it 

was actually shown that the total potential energy of the native structures are lower than the non-

native alternatives. Luthy et al also developed an empirical method to evaluate the correctness of 

protein models [26].  

 

For both physics-based and knowledge-based potentials, models were built on different 

scales. Normally there are two categories of models in terms of atomic detail complexity: all-

atom level models and residue-based ones. All-atom model potentials should normally include 

the interactions between all the atom types and pairs within a protein structure, while for residue-

based models, we reduce the protein structure into units of residues/amino acids, or other types 

of simplified structural units, depending on how the specific models were constructed. Quite 

often the distribution of pairwise distances is used to extract a set of effective potentials between 
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residues or atoms. In most cases, the knowledge-based potential is built and then used on 

reduced protein models, i.e., using one or two points for each residue to represent a protein.  

These points are usually located at the coordinates of the center of mass or geometric center of 

each side chain. For example, Zou et al constructed a protein-protein interaction model with the 

structure of a protein represented by 20 different types of atom groups [24]; Zhang et al 

developed a residue-specific, 20 residue types potential which was reduced from an all-atom 

knowledge-based potential (167 atomic types) based on distance-scaled, finite ideal-gas 

reference state [25]; and more models have been built based on each amino acid being treated as 

a structural unit. Our potential, falls into this category as well. The advantage for these residue-

based, or reduced atom-groups based models is that it is much easier for us to do the structure 

reduction calculations, and the actual calculations for the potential. In contrast, those all-atom 

potential models usually cost much more computer time than the residual based ones, for 

example, in folding recognition or ab initio predictions. Nevertheless, several potentials for 

higher-resolution models had been developed in the hope of providing better discriminatory 

power than obtained with residue-based potentials. For ranking structures near the native fold, 

and for protein structure refinement, the detailed interactions between side-chain atoms from 

different residues may be required to rank correctly low root-mean-square deviation structures 

[25-28]. 

 

For the knowledge-based potentials, a large category of them falls into the use of radial 

distribution function (RDF) in order to predict the so-called potential-of-mean-force. In Sippl‟s 

work, the potentials-of-mean-force were evaluated as a function of distance for two-body 

interactions between amino acids in protein structures from the radial distribution of amino acids 

from known protein native structures [29]. The potentials of mean force for the interactions 

between C
β
 atoms of all amino acid pairs were used to calculate the conformational energies of 

amino acid sequences in different folds, and it was found that the total energy of the native state 

is the lowest among all the other non-native ones [30, 31, 32]. Bryant and Lawrence also 

estimated the pairwise contact potentials depending on inter-residue distance [33]. In Covell and 

Jernigan‟s paper, pair contact energies were demonstrated to discriminate successfully between 

native-like and incorrectly folded conformations in a lattice study of five small proteins [34]. 
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          In the following section, we will discuss this type of knowledge-based protein potential in 

detail, which uses the knowledge of the radial distribution function of amino acids/atomic groups 

based on known protein structures. Starting from the radial distribution function, which is 

defined as 

                                                                           
      

       
  (1) 

where        and    
     are the number densities of the components i and j which pair at a 

distance r in the experimental structures and in the reference state, respectively. And then, the 

potential-of mean-force can be represented as the logarithm of the radial distribution function: 

                                                                                     (2)                                                                      (1) 

Where    denotes the Boltzmann constant, T stands for the system temperature, i and j stand for 

component i and j from different part of a protein complex. The total energy score is then the 

sum of all the inter-residual interaction energies: 

                                                                                    

   

  (3)                                                                      (1) 

This method of constructing potential energy between residual pairs in a protein was first 

developed by Miyazawa and Jernigan in 1985 [35], and then has been reexamined in 1996, with 

a significantly larger set of protein crystal structures being used for the knowledge extraction. 

Also, an additional repulsive packing energy term has been added for the 20 amino acids as a 

function of the number of contacting residues, based on their observed distribution [36].     

 

  For the potential-of-mean-force calculated from the above method, this kind of two-body 

residue-residue potential shows peaks and valleys that correspond to the radial distribution 

function that used. And these peaks and valleys appear in the potentials definitely represent  

certain repulsive/attractive areas with the change of inter-residue distances. However, it should 

be noted that such a potential does not really reflect the actual repulsion or attraction interaction 
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forces between the pair of residues under study, but instead, it is an “effective” potential in a 

sense that it also includes the average effect due to other residues/environments that act upon this 

certain pair of residues.   

 

   For years, we have seen different variations of the traditional potentials-of-mean-force 

coming out. Nishikawa and Matsuo devised an empirical potential that was composed of four 

terms: side-chain packing, hydration, hydrogen bonding and local conformational potentials [31], 

with  the parameters derived from structures of 101 known proteins, where each of the four terms 

are summed with weights in the total energy score. Their potential used a slightly modified form 

of Sippl‟s potential [33] for the side-chain packing effects in proteins. All the other terms in their 

potential were evaluated as potentials of mean force. This function was also demonstrated to be 

an appropriate measure of the compatibility between sequences and structures of proteins. 

  

As mentioned before, it should be noted here that a two-body residue-residue potential of 

mean force based on the radial distribution of residues will manifest peaks and valleys as a 

function of distance, even for hard spheres, which are effects of close residue packing. However, 

these may not be present in actual interaction potentials. That is, such a potential of mean force 

reflects not only the actual inter-residue interactions, but also includes the average effects of 

other residues upon the target residue pair, including  those interposed between the target  pair 

and especially the significant  effects of residue packing in protein  structures. There will be an 

over-counting if the sum of the potential is taken over all residue pairs. Thus, if the residue-

residue potential in a protein is approximated by such a potential of mean force only, the sum of 

the potential over all residue pairs is unlikely to yield the correct value for the total residue-

residue interaction energy. In addition, even though these effective potentials have the important 

characteristics of low energy values for the native folds of proteins, they are unlikely to succeed 

in representing the actual potential surface far from the native conformation. Therefore, such 

potentials-of-mean-force may not be appropriate for applications in study of a wider range of 

conformations, from the denatured state to the native conformation. 
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Meanwhile, it should be noted that the various knowledge-based potentials that are based on 

the potential-of-mean-force, as mentioned above, are estimated with the Bethe approximation, 

i.e., it is assumed that residue-residue contacts in protein structures are treated the same with 

those in mixtures of unconnected amino acids and other solvent molecules [39]. The Bethe 

approximation is a well-known second-order approximation to the mean field approximation that 

used to describe behaviors in a system consisting of mixtures of multi-component molecular 

species which interact with each other through chemical bonds, or other forms of interactions 

[40].  Both the mean-field approximation and the Bethe approximation are used to calculate the 

partition function for such a mixture system of particles interact with each other.   

                

         One problem with the potential-of-mean-force based scoring functions is the lack of  

consideration of higher order expansion terms. From the original Ornstein-Zernike (OZ) equation 

[41] 

3( ) 1 ( ) ' ( ')[ ( ' ) 1],g r c r d r c r g r r      (4) 

where r is the distance between two amino acids,  is the density of amino acids in question, g(r) 

is the radial distribution function, and      is the direct correlation function, and Eq.(4) can be 

also written as 

                                                                                    (5)                                                                      (1) 

which means that the total correlation        between particles 1 and 2 can be written as a sum 

of the direct correlation        (that comes from the interaction between particle 1 and particle 2 ) 

and the indirect correlation                      , that represents the sum of interactions between 

particle 1 and all other particles in the space. Now if we write this indirect term as               

we will have 

                                                                                    (6)                                                                      (1) 

As mentioned above, we could use the potential-of-mean-force as the estimation for           
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                                                                                  (7)                                                                      (1) 

where       is the potential-of-mean-force that introduced before. And then, the indirect 

correlation              becomes 

                                                                                   (8)                                                                      (1) 

where       is the true interaction potential between the pair of particles that interact. So we can 

see that our estimation using the potential-of-mean-force is actually ignoring the term of 

                 .  

 

        If we try to conduct expansions to the term                     (for example, using a 

Fourier expansion,) we could improve the accuracy of estimation for the potential-of-mean-force.  

Several similar ways have been developed in order to deal with this problem. In Pliego-

Pastrana‟s work, the potential-of-mean-force has been improved by applying closure 

relationships such as the hypernetted chain (HNC) approximation, or the Percus-Yevick (PY) 

approximation:  

                                                                                       (9)                                                                      (1) 

                                                                           
    

        
   (10)                                                                      (1) 

By doing this, the effective pairs potential u(r) can be improved, compared to the potential-of-

mean-force which simply take the logarithm of g(r) as an estimation of the potential.  Pliego-

Pastrana et al used this idea to compute the effective potentials between amino acid residues in 

2003 [41]. These estimated pair potentials, which used the above closure relationships, could 

better reflect the thermodynamic properties of the system in contrast to the potential of mean 

force, by including more accentuated sensitivity of the pair interaction potential to the variation 

of thermodynamic states. 
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        This method has been proved to be useful to characterize some quite different systems, for 

example, the pairwise interaction among colloidal particles [42, 43]. When applied to the 

problem of effective pairwise interactions between amino acids, it was showed by Pliego-

Pastrana that this method could be able to describe the characteristic lengths in the formation of 

α and β secondary structures for alanine and glysine [45].  

 

        While Pliego-Pastrana‟s method has improved the potential-of-mean-force to a certain 

extent, the ignored part is the bridge function (which is hard to be estimated analytically). In this 

thesis, we will be introducing a new way that further improves the effective pair potential 

prediction between amino acids, which includes the effects of the bridge function by using an 

iterative predictor-corrector procedure or a Reverse Monte-Carlo (RMC) calculation. Two 

methods are given in our work for the iteration step: one is the traditional MHNC method with 

the predictor-corrector algorithm; and another will be the Reverse Monte Carlo method. The 

theory and application of these two methods will be introduced in detail in Part II of this thesis; 

the training protein structure data sets and the procedure to calculate radial distribution functions 

between amino acids will also be discussed in Part II. The calculated pair potentials will be 

presented in Part III, together with the results for decoy set tests of the whole protein energy 

scores; some comments and discussions will be made in Part IV; finally, in Part V, a summary 

will be given for the entire work. 
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Chapter II. Materials & Methods 

 

               

i) Preparation of the training data set 

 

 

        In our study, the proteins that used to collect the pairwise distribution data are from the 

Protein Data Bank (PDB) [46], and they all satisfy the conditions that:  

 

  1) All protein structures used are determined by X-ray analysis with resolution equals to or 

better than 2.5Å. All protein structures determined by NMR are excluded.  

  2) Our study is based on high molecular weight, all proteins that used contain at least 1000 

amino acids. (The reason for this criteria is that only systems with a large number of elements are 

expected to attain thermodynamic equilibrium.)   

 

 

        The total number of protein structures used in our calculation is 996. Our list of proteins 

includes hydrolases, oxidoreductases, atpases, groels, etc. This dataset has been pre-selected so 

that proteins with redundant/similar sequences have been removed. There are two ways we could 

do this: 1) using protein representatives that are sufficiently dissimilar to each other in their 

sequences; or 2) using a different statistical weight for each protein related to its extent of 

similarity to other sequences. So far, most statistical analyses have used a representative set of 

proteins. Usually, protein representatives are chosen by specifying an upper limit for sequence 

identity [47] or structural similarity [48, 49]. However, it is not clear what value is best as an 

upper limit of similarity in protein representatives. Also, in such a method, many good structures 

may be discarded. In this work, the second approach has been taken. 
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ii) Calculation of the Radial Distribution Function 

                

  In statistical mechanics, the radial distribution function (RDF) g(r) describes how the 

particles‟ density varies as a function of the distance from one tagged particle. More precisely, if 

there is a particle at the origin O, and if n = N/V is the average number density, then the local 

density at distance r from O is ng(r).  

 

  In this study, we obtained pairwise distribution functions g(r) from the 996 structurally 

distinct proteins, as described above in the previous section. For each protein, we assumed the 

positions of the centroids of the N residues located inside the sphere of volume V (the position 

and size of the sphere are such that big voids are minimized). The corresponding number density 

is then ρ=N/V. Pairwise correlation functions of individual proteins were computed on the 

understanding that             is the number of residues between two concentric spheres of 

radii r and r+dr, respectively, about a central residue [50]. The spatial resolution dr was 

estimated to be 0.2 Å, considering the uncertainties in centroids‟ coordinates. 

 

 Although it is possible to provide accurate approximations to get the effective pair potential 

u(r), the radial distribution function (RDF) has to be determined with enough precision to 

minimize errors induced by statistical noise. Thus, to improve the statistics, we averaged the 

results from proteins of rather close number densities.  

 

 In order to calculate g(r), we use the equation,  

1 1

1
( ) ( ) ,

N N

i j

i j

g r r r r
N

 



 


    

    (1) 



www.manaraa.com

12 
 

 

where the indices γ and µ refer to species 1 and 2 (for instance, Glycine and Alanine). χγ = Nγ /N 

is the residue‟s ratio for each components in the mixture, where Nγ is the number of particles of 

species γ, and N=Nγ+Nµ. The angular parentheses denotes an ensemble average over all proteins 

to be sampled, while ri is the position of the geometric center of residue i, and δ(r) is Dirac‟s 

delta function. The number density is ρ=N/V with V being the total volume, and this density can 

actually be estimated by normalizing the above calculated factor  
 

     
  

  

   
     

  

   

               ; and However, Eq.(1) is valid only for the case of infinite systems. In order to obtain 

bulk-like properties from systems of a finite size but large enough to extract a structural or 

thermodynamic property, an additional normalization procedure could be applied as discussed in 

[45].  

 

 

iii) Theory and Method of Predictor-Corrector MHNC 

 

        After the radial distribution functions (RDF) have been derived, we could use these RDFs to 

specify the pair interaction functions between particles. The determination of the inter-particle 

interaction in the condensed phases of matter is of fundamental importance and this is the so-

called inverse-problem, i.e., the deduction of the inter-particle interactions starting from 

measured structural data as obtained from scattering experiments. It is believed that in a 

monatomic liquid, there is a one-to-one correspondence between the structure factor for density 

fluctuations                  (where    is the    component of the microscopic density 

fluctuation) and the pairwise interaction     . If the system many-body forces are present, this 

interaction      will serve as an “effective” two-body interaction which includes the effect of 

many-body interactions, and it will be state dependent. 

 

        In our work, the main task is to generate the effective pairwise potential functions between 

pairwise amino acids from the known g(r) of protein structures. The history of this inverse 

problem can be traced back to Johnson, Hutchinson and March [51], and since then there have 
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been different theoretical methods developed to solve this problem, and widely different results 

have been obtained from the same data [52, 53]. It has become evident that scattering data of 

very high precision, at least of order of 1% in absolute accuracy, are required over a wide range 

of moment transfer    Since in a dense fluid, the RDF g(r) is very insensitive to the exact shape 

of the pair potential     , therefore, the exact pair potential solution in the inverse problem still 

remains a hard problem to solve [50].  

 

        The simulation of model fluids is ideally suited to test whether a theory is adequate for this 

purpose: Using the RDF obtained from a simulation one should be able to recover the interaction 

potential used in that computation. However, since the simulation results are statistical in nature, 

this is a meaningful test only if the statistical noise of simulation is small enough. Therefore, we 

need to conduct simulations that can give RDFs accurate enough to test theories. In the following, 

we will introduce an inversion scheme that has been proposed by Reatto et al [57] and has been 

applied to a related problem in the Jastrow theory of Bose quantum fluids [54], which was shown 

to be successful in the extraction of the pairwise interaction with good accuracy. This scheme is 

based on the modified hypernetted chain (MHNC) equation and on simulation.  

 

         The method starts from the Ornstein-Zernike equation [50]: 

                                                                                         (2)                                                                      (1) 

where r is the distance between two amino acids,  is the density of amino acids in question, and 

     is the direct correlation function. The pairwise potential      between two amino acids can 

be found from the MHNC equation 

                                                                                      (3)                                                                      (1) 

where   is the inverse dimensionless temperature, and [ ; ( )]Er V r  is the bridge function. In 

Eq.(3), in order to get     , the only missing part is the bridge function [ ; ( )]Er V r . Bridge 

functions do not have analytical expressions and they have to be approximated with certain 
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closure relations. For example, [ ; ( )] 0E r V r  is known as the Hypernetted Closure and 

[ ; ( )] ( ) ( ) 1 ln[ ( ) ( )]E r V r c r g r g r c r      leads to the Percus-Yevick (PY) approximation. As 

mentioned in the previous chapter, works by Pliego-Pastrana et al used the above two closure 

relations to solve Eq.(3), in order to estimate the effective pair potentials between two alanines, 

two glycines, and pairwise interaction potential between an alanine and a glycine [41, 45]. The 

results provided by these two approximations are, as reported in [45], satisfactory but not 

accurate. Now we want to use a predictor-corrector algorithm to improve the estimation for the 

bridge function. (Another method, which will be using the Reverse Monte-Carlo method, will be 

discussed in the next section.) 

 

The predictor-corrector approach was initially introduced by Reato et al [54] to solve a 

problem in the theory of Bose quantum fluids and found to converge, and then extended to dense 

classical liquids [57]. In the following, we will briefly introduce the theory of this method. 

 

Let in the i
th

-iteration step we know the pairwise interaction potential for the i
th

 iteration to 

be      , then the pair potential at the i+1
th

 step can be found by 

                                                                                    (4)                                                                      (1) 

where the bridge function for the i
th

 iteration              is found by 

                                                                                      (5)                                                                      (1) 

        The correlation function ( )ig r
 on the right-hand side of Eq.(5) for the given pair potential 

      will be generated by Monte-Carlo simulation, and the direct correlation function       will 

be calculated as a solution of the Ornstein-Zernike (OZ) equation after a Fourier transformation 

of (2)  [50]: 

                                                                       
      

         
      (6)                                                                      (1) 
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where ( )ih k is the Fourier transformation of the correlation function         
( ) 1ig r 

 Now if we 

conduct reverse-Fourier transformation for       , we will get       that can be readily used in 

Eq.(5). 

 

        At the beginning of this iteration, we will use the potential-of-mean-force as the starting 

point; and the radial distribution function      for the starting potential-of-mean-force can be 

calculated by using Monte-Carlo simulation as well. And then the pair potential for the following 

step will be estimated using Eq.(4). Repeat this procedure until in two consecutive steps, the 

     computed become converged to each other within a certain tolerance, i.e.,          

        . As long as the radial distribution function      converges, the effective pair 

potential      will converge as well. And the pair potential         which gives the converging 

     will be treated as the final effective pair potential we want to estimate.  

 

 

 

iv) Reverse Monte-Carlo Method (RMC) 

 

        Another approach to solve this problem is by using the reverse Monte-Carlo method. This 

method also belongs to the general category of solving the inverse problem to get the interaction 

potential in atomic and molecular systems. Also, it can be applied to more complex systems such 

as bimolecular systems and organic molecular systems. This method also starts from the radial 

distribution function     , which could be obtained from the experimental structural data, as has 

been previously discussed. No input potential is required for this method, and the simulation is 

carried out to minimize differences between calculated and reference averages.         

 

        The main objective the Reverse Monte-Carlo method is to provide a method to reconstruct 

the Hamiltonian from radial distribution functions (RDF). In general, the solution of this problem 
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is not unique; however, if we consider a limited class of Hamiltonians (e.g., those represented by 

a sum of pair interactions), the solution will be well defined. In the following, we will present 

this method of automatic adjustment of the pairwise interaction potential, irrespective of its 

analytical form, to known radial distribution functions.  

 

        The idea of this method goes back to the renormalization group Monte-Carlo method for 

phase transition studies in the Ising model by Swendsen and co-workers [58, 59]. This algorithm 

was first used to extract the interaction potential for the blocked spins, and now it is shown that 

the applications of this method could be generalized to a much broader type of systems. It will be 

shown below that it is possible to renormalize the Hamiltonian of a molecular system of interest 

[60], and therefore the pair interaction potential could be reconstructed.  

 

        Consider a system with a Hamiltonian (potential energy) given as  

           
 

      
 

(7) 

where        are functions of particle coordinates   , and    are constants which construct the 

pair interaction potential in the distance section α. The summation in Eq.(7) may also be 

represented by an integral.  

 

        The Hamiltonian of a system with pair interactions can be therefore given as Eq.(7):  

        

   

                            
 

 

  

   

 

                                                 =                      
 

 
  . 

 

(8) 

        In comparison with Eq.(7), the sum is now replaced by an integral, α is replaced by  ,    is 

replaced by     , and         replaced by                  .  
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        Generalization to particle mixtures is straightforward. We could easily extend the 

Hamiltonian given in Eq.(7) for systems with three-particle interactions in a similar fashion. 

 

        The Hamiltonian in Eq.(7) is defined by a set of parameters    . These parameters span a 

space of Hamiltonians determined by the structural factor       , which basically tells how 

many particles there are in each grid of the coordinates. These Hamiltonians may be considered 

as equivalent if they have the same canonical averages           for each α. For systems defined 

by pair interactions [Eq.(8)], this coincides with the radial distribution functions      , due to the 

fact that               . The averages      are functions of constants      from the ensemble 

average        
 . The averages can be calculated from computer simulations (as in our case, 

the Monte-Carlo simulations) of the whole system.  

 

        In the vicinity of an arbitrary point in the space of Hamiltonians,     , we can write 

        
     

   
   

 

         
 

 (9) 

 where the derivative 
     

   
can be further calculated as 

     

   
 

 

   
 
                        

                   
   

                                                                 

 

(10) 

 and   is the set of degrees of freedom of the reduced system.  

 

        Let   
   

 denote a set of starting values for the parameters    for the potential. By carrying 

out a MC simulation using these values   
   

, a set of ensemble averages for the structural factor 

   
     can be collected in the end of the simulation. The differences between the starting values 

of    
     and the reference values are      

       
       

  . Then, by solving a set of linear 

equations for each coordination grid γ as given in Eq.(9), with appropriate coefficients calculated 
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from Eq.(10), and by omitting terms of order        , we can obtain the differences    
   

 and 

use them as corrections to the starting potential parameters according to Eq.(11): 

 

  
   

   
   

    
   

  (11) 

         The MC simulation is then repeated with this new updated potential   
   

 to determine a set 

of corrections    
   

. The procedure is repeated until convergence is reached, e.g., when the 

difference        becomes vanishingly small for each   within the accuracy of the statistical 

error of the simulation. The algorithm is similar to that which solves the multidimensional 

nonlinear equations using the Newton-Raphson method [61]. 

 

        A similar method has been applied to a study of the critical point region in the Ising model 

in [59]. In that particular case, the number of constants     was finite. In fact, it was in the range 

from 1 to 7. For molecular systems described with pair interaction potentials, the formal number 

of constants is infinite because of the integral in Eq.(8). For numerical solutions, we can use a 

finite grid to approximate a continuous function.  

 

        Let      be the cutoff radius for the interaction potential in the computer simulation. For 

example,      can be chosen as half of the cubic box length. The interval          can be 

divided into M small slices, with each slice corresponding to a small region around the distance 

  =
     

 
           Then the Hamiltonian of the system of N particles can be written as  

          

 

   

  
 

 (12) 

where             is the potential parameter value at the distance     and    is the number of 

pairs between the particles within distances around    inside the  th piece of slice. In computer 

simulations,    can be normally estimated with the radial distribution function     : 
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  (13) 

           It can be apparently seen from Eq.(13) that if we know the radial distribution function g(r), 

we are able to compute the assemble averages       . As a trial function or an initial 

approximation to the effective potential function, we can use, for example, the potential-of-

mean-force which was discussed in the previous sections: 

          
   

                    (14) 

                    

                         

                     

v) Comparison between  Predictor-Corrector MHNC and the Reverse Monte-Carlo 

Method 

 

 

          In our study, both the predictor-corrector MHNC and the Reverse Monte-Carlo method 

were used to extract the effective potential between each pairs of the 20 amino acids. For the 

predictor-corrector MHNC method, the iterations converged in 10 iteration cycles, on average; 

for the Reverse Monte-Carlo method, the iteration can get converge within 6 cycles, on average. 

We compared the resulting effective pairwise potentials obtained by both ways and found that 

the differences between the resulting potentials from the two methods are within a statistical 

error range (<1%).  Therefore, we can conclude that these two methods will lead to the same 

results for the effective pair potential, but the Reverse Monte-Carlo method is more efficient in 

terms of computing time.  

 

vi) Total energy score calculation and the decoy sets 

 

 

         After we have obtained a complete set of effective pair potentials between 20 amino acids, 

we will sum them up to get the total energy score of the protein: 
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(15) 

 

         Since the native structure of a protein must be the lowest in its free energy compared with 

all other conformations of the same chain in order to be almost exclusively populated in solution, 

a stringent test of energy functions is the extent to which they attribute lower energies to native 

and near native conformations than to non-native conformations. Indeed, “decoy discrimination” 

tests have become a widely used approach for testing and validating alternative energy models 

[62, 63, 64]. 

 

 

           An optimal decoy set should (1) contain conformations for a wide variety of different 

proteins to avoid over-fitting; (2) contain conformations close (<6Å) to the native structure 

because structures more distant from the native structure may not be in the native structure‟s 

energy basin and thus become impossible to recognize; (3) consist of conformations that are at 

least near local minima of a reasonable scoring function, so they are not trivially excludable 

based on obviously non-native protein like features; and (4) be produced by a relatively unbiased 

procedure that does not use information from the native structure during the conformational 

search. If (4) is the case, then a method that performs well on the decoy set can immediately be 

used for structure prediction [65].  

 

 

        In our study, we used the Decoys „R‟ Us decoy set [66] which has a list of decoy structures 

whose main use is to test energy or score functions for protein structures. These decoys are 

computer generated conformations of proteins that possess some characteristics of native 

proteins, but are not biological real proteins. We apply our extracted potentials to the single and 

multiple decoy sets available in this dataset. Single decoy sets have one correct and one incorrect 

conformation given for each native protein structure; multiple decoy sets have a list range of 

conformations with various root mean square deviations (RMSD) from the native structure. The 

main goal is to distinguish the non-native conformations from the native one. The results for the 

decoy set tests will be shown in the next chapter. 
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Chapter III. Results 

 

 

i) 210 extracted  potentials  between 20 amino acids 

 

 

        We extracted 210 effective pairwise potentials between 20 amino acids, using the Reverse 

Monte-Carlo method. (Since comparisons have been made with those generated by the predictor-

corrector MHNC method, and the results turned out to be almost identical. So we chose the 

Reverse Monte-Carlo method, which was much more efficient in terms of computer time.)  

12058 amino acids were used during the Monte-Carlo simulation step. For each type of amino 

acids, the following numbers were used in the simulation: 1084 Alanines, 650 Arginines, 470 

Asparagines, 699 Aspartic acids, 145 Cysteines, 831 Glutamic acids, 410 Glutamines, 952 

Glycines, 301 Histidines, 687 Isoleucines, 1096 Leucines, 650 Lysines, 241 Methionines, 482 

Phenylalanines, 578 Prolines, 662 Serines, 650 Threonines, 169 Tryptophans, 410 Tyrosines and 

891 Valines. 

 

        The above mentioned amino acid component ratios were obtained according to the 

corresponding ratios from the protein training data that we used. For the 12058 residues in the 

MC, we run approximately five days for each Monte-Carlo cycle; and the Reverse Monte-Carlo 

get converged in 5-6 iterations on average. As a result, 210 effective pair potentials were 

extracted after we run Reverse Monte-Carlo iterations. Some of the extracted potential were 

plotted in Figures 1-6. 

 

         From these extracted effective potentials, we could see that they share some common 

properties. 1) A large number of them have their first minima at around r = 3Å region (as in the 

case of ALA-ALA pairwise potential, see Fig.1). This is due to the fact that the two consecutive 
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amino acids have a distance of 3.8Å in a polypeptide chain. 2) Some potentials do not have the 

3Å minima shown, but instead, they have their first minima shown at around r = 5-6 Å region (as 

in the case of ALA-ARG pairwise potential, see Fig.2). The reason for this is that these certain 

pairs of amino acids are not very likely to be found next to each other on a polypeptide chain, at 

least for our training sample pool of protein structural data.  

 

 

Fig.1. Extracted pairwise potential between ALA and ALA 
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Fig.2. Extracted pairwise potential between ALA and ARG 

 

 

Fig.3. Extracted pairwise potential between ALA and ASN 
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ii) Calculation of the whole protein potential 

 

        After the 210 extracted potentials between each pair of the amino acids were obtained, we 

sum them up to get the energy of the whole protein: 

                     

   

 
(1) 

 

 

iii) The Decoy Set Test Results  

     

 

1. Single Decoy Set Test 

 

          The single decoy set in the Decoys „R‟ Us [66] has misfolded conformations listed for 23 

native chains: 1bp2, 1cbn, 1fdx, 1hip, 1lh1, 1p2p, 1ppt, 1rei, 1rhd, 1rn3, 1sn3, 2b5c, 2cdv, 2ci2, 

2cro, 2cyp, 2i1b, 2paz, 2ssi, 2tmn, 2ts1, 5pad, 5rxn. The energy scores for the native and the 

corresponding misfolded conformations are listed in Table1. The energy scores for the native 

conformations were observed to be consistently lower than the energy scores for the non-native 

conformations. Using our extracted potential, the native energy scores were lower than the 

misfolded energy scores for all cases. On average, the total scores of the misfolded 

conformations were lower than that of the corresponding native conformations by 21.7%. 

  

Protein  

(PDB id) 
Native energy score Misfolded energy score 

1bp2 -593.5 -574.4 

1cbn -1331.5 -1211.6 

1fdx -196.7 -138.6 

1hip -347.8 -337.4 

1lhl -761.8 -359.1 

1p2p -566.7 -505.6 

1ppt -132.0 -102.0 
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1rei -1129.7 -1095.8 

1rhd -338.9 -297.2 

1rn3 -605.8 -580.5 

1sn3 -243.5 -234.5 

2b5c -356.0 -350.2 

2cdv -486.7 -456.2 

2ci2 -250.6 -245.3 

2cro -277.8 -256.4 

2cyp -1588.3 -1402.5 

2ilb -721.9 -711.0 

1paz -578.4 -577.0 

2ssi -452.3 -353.5 

2tmn -1729.5 -1515.5 

2ts1 -1653.7 -1648.3 

5pad -1085.1 -986.9 

5rxn -861.2 -602.4 

 

Table1. Energy scores for the misfolded single decoy set from the „R‟ Us database [66]. The 

native conformation energy scores are lower than their decoys for all case. 

 

 

 

2. Multiple Decoy Set Test 

         

        The Decoys „R‟ Us decoy set also provides multiple decoy structures for a set of proteins 

[66]. For each native conformation, there are multiple non-native conformations which fall in a 

range of root mean square deviations (RSMD) from the native structure. The decoys generated 

using different methods are classified separately (labeled lattice_ssft, 4state_reduced, lmds, fisa, 

and so on). Decoys are generated for a series of native proteins using each method. Rank scores 

of the native structure among its decoys as well as energy-RSMD plots for the native and decoy 

structures have been commonly used to test the effectiveness of potential functions. The Rank 

scores were calculated for all the native and decoy structures based on our extracted potentials. 

Also, to compare our potential with some of the previously developed potentials, we list the rank 

scores for the 4state_reduced, lattice_ssfit and lmds decoy set calculated using Miyazawa-

Jernigan (MJ) potentials as listed in Park and Levitt‟s paper [67], and Krishnamoorthy and 



www.manaraa.com

26 
 

 

Tropsha‟s four-body potential [68]. We will discuss the comparison results given by our 

extracted pairwise potential and the other two potentials in the later section.  

 

        As shown by the results (Table 1-3), our potential could successfully distinguish the native 

structures from their decoys in most of the cases. For the 4state_reduced multiple decoy set, our 

potential ranks 3 out of 7 proteins as the lowest energy; it also ranks the 2cro protein as the 

second lowest, and the 1ctf protein as the third lowest. In contrast, Miyazawa Jernigan‟s 

potential could only rank 2 out of 7 proteins as the lowest energy in this decoy set; and for those 

that do not rank as the lowest, our potential also out performs the Miyazawa-Jernigan potential, 

as shown in Table 1. Krishnamoorthy and Tropsha‟s four-body potential could also rank 3 out of 

7 proteins in this decoy set as the lowest energy; but for the others (that were not rank as the 

No.1 lowest energy structures), KT‟s potential ranks the 1r69 as the third lowest and 4rxn as the 

5
th

 lowest, but could only rank the 1sn3 protein as 113
th

.   

 

Protein Our potential rank  MJ potential rank KT potential rank 

1ctf 3 17 7 

1r69 1 9 3 

1sn3 35 97 113 

2cro 2 1 1 

3icb 1 1 1 

4pti 1 2 1 

4rxn 8 7 5 

       Table1. Native rank scores for the 4state_reduced multiple decoy set                           

 

Protein Our potential rank  MJ potential rank KT potential rank 

1beo 1 1 1 

1ctf 1 1 1 

1dkt-A 36 92 89 

1fca 1 2 1 

1nkl 1 1 1 

1pgb 15 25 14 

1trl-A 146 175 1179 

4icb 1 1 1 

          Table2. Native rank scores for the lattice_ssfit multiple decoy set 
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        For the lattice_ssfit multiple decoy set, our potential could rank 5 out of 8 proteins as the 

lowest energy scored ones. To compare with our potential, Miyazawa-Jernigan potential rank 

scores were also listed. It shows that the MJ potential could rank 4 out of 8 proteins as the lowest 

energy, and ranks the native 1fca protein as the second lowest. For the other three proteins 1dkt-

A, 1pgb and 1trl-A, our potential performs better than the MJ potential in the ranking score for 

all of them. Krishnamoorthy and Tropsha‟s four-body potential also ranks 5 out of 8 proteins in 

this decoy set as the lowest energy, but for the other three proteins (1dkt-A, 1pgb and 1trl-A), our 

potential gives better rank then the KT‟s potential (as can be seen from Table2).  

 

Protein Our potential rank  MJ potential rank KT potential rank 

1shf-A 13 15 28 

1b0n-B 25 32 488 

1bba 36 92 205 

1ctf 1 2 1 

1dkt 1 1 4 

1fc2 15 25 372 

1igd 146 175 189 

2cro 1 1 1 

2ovo 30 55 46 

4pti 7 9 7 

                   Table3. Native rank score for the lmds multiple decoy set 

 

        The lmds multiple decoy set is probably the hardest among the three. For this decoy set, our 

potential could rank 3 out of 10 native structures as the lowest energy among all the decoys, 

while both the Miyazawa-Jernigan and  Krishnamoorthy and Tropsha‟s potential only 

successfully placed 2 out of 10 native structures as the lowest energy. For all the other proteins 

that do not rank as the lowest energy, our potential still perform better than the other potentials, 

as listed in Table3.  
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3. RMSD test 

 

        In order to study the variation of the total energy scores with the RMSD (Root-Mean-

Squared-Distance) of the protein structures, we plotted the energy scores calculated from our 

extracted potential for the native structure (which is assigned an RMSD value of zero Å) and its 

decoys against their RMSD values for each of the decoys considered. There is an observable 

trend in increasing the total scores with increasing RMSD values in most of the cases, as can be 

seen from the plots below. 

 

      

                  

 

Fig.1 Total energy score for 1ctf and its 630 decoys (from the 4state_reduced decoy set) as a 

function of the RMSD values. (The native score is lower than 99.7% of the decoy scores) 
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Fig.2 Total energy score for 1r69 and its 675 decoys (from the 4state_reduced decoy set) as a 

function of the RMSD values. (The native score is lower than all of the decoy scores) 

 

 

Fig.3 Total energy score for 1sn3 and its 660 decoys (from the 4state_reduced decoy set) as a 

function of the RMSD values. (The native score is lower than 94.7% of the decoy scores) 
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Fig.4 Total energy score for 2cro and its 674 decoys (from the 4state_reduced decoy set) as a 

function of the RMSD values. (The native score is lower than 99.8% of the decoy scores) 

 

 

Fig.5 Total energy score for 3icb and its 653 decoys (from the 4state_reduced decoy set) as a 

function of the RMSD values. (The native score is lower than all of the decoy scores) 
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Fig.6 Total energy score for 4pti and its 687 decoys (from the 4state_reduced decoy set) as a 

function of the RMSD values. (The native score is lower than all of the decoy scores) 

 

 

Fig.7 Total energy score for 4rxn and its 677 decoys (from the 4state_reduced decoy set) as a 

function of the RMSD values. (The native score is lower than 99.0% of the decoy scores) 
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Chapter IV. Discussion 

 

 

i) Discussion for the potential 

 

 

        As mentioned before, the effective pair potentials were extracted from a training set of 996 

X-crystal native protein structures collected from the Protein Data Bank, as described in 

Materials and Methods. The potentials for each pairs of amino acids were generated. The 20 

amino acids types result in a total number of 210 inter-residue potentials, because the pair 

interaction potential between residue i and residue j cannot be distinguished from the pair 

potential between residue j and residue i. The large number of residual pair occurrences for most 

residual pairs in the large training set guarantees sufficient statistics to derive the pair potentials 

for these pairs.  

 

        Firstly, it is worth noticing that our extracted effective pair potentials share similar shapes 

with the corresponding potentials of mean force (which were obtained by simply taking the 

logarithm of the radial distribution function g(r)). The peaks and wells appear at similar distance 

locations for most of the time, but overall our extracted potentials were less attractive, compare 

with the corresponding potentials of mean force. Also, the effective potential u(r) has a rather 

unusual form. It normally contains of three sharply defined potential wells and two barriers of 

distinct shapes, but some of them only contain one or two wells; all of them have magnitude of 

the order of KbT. This specific combination of barriers and wells, however, predicts the 

existence of polypeptide bond and the α-helix structures, which are two most prominent features 

shown in a protein structure. If we try to reconstruct a protein structure, these characteristic 

peaks and wells will give the repulsion and attractions needed to regenerate a native structure. 

Normally, the first minima in our effective pair potential (which appears at around r = 3Å) 

corresponds to the distance of two consecutive residues that found in the known structures; and 
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the second minima (which appears at around r = 5Å, in most cases) usually represent the 

existence of some specific structural motifs – such as alpha-helixes, and the positions of the 

minima usually fix the distance d between the two residues at the i and i+2 locations of the 

sequence. 

 

          In some other cases, the distance between the residues at the i and i+2 locations of certain 

sequences is equal to the minimum of the third well, which appears at around r = 6 to 7Å. The 

angle between these two pairs of residues (i, i+1) and (i+1, i+2) turn out to be 119 degrees. Not 

surprisingly, this phenomenon is in concordance with the appearances of the β-sheets and β- 

strands. 

 

 

ii) Discussion for the Decoy Set Test 

 

 

         As mentioned before, we used the „R‟ Us single and multiple decoy set for our test of the 

generated residue-based pair potentials for the whole protein energy calculation. Several other 

studies on protein potential functions have used the same decoy set before. Therefore, we will 

compare the decoy set test results on our potential with these previously developed potentials. It 

is worth noticing that those potentials, which have been developed in different other groups, 

were not all residue-based. Some of them had a much higher level of model complexity, for 

example, the all-atomic ones. Since those potentials require much more computational time to 

generate and to be tested against, so we confine our comparison only to those potentials that have 

a similar our slightly higher complexity levels with ours. 

 

 

         As have been shown in the Results section, our extracted potential was able to distinguish 

successfully the native structures against the misfolded one in the single decoy structure test. For 

all the 23 protein structures that have been examined, our potential gives the native structures 

lower total energy scores than the misfolded structures; and the total energy of the native ones 
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were 21.7% lower than the misfolded ones, on average. Krishnamoorthy and Tropsha‟s four 

body potential [68] also report lower energy scores for all these 23 native structures. However, 

their model of the potential has a much higher level of complexity. We also conducted the same 

test for the potential of mean force, for the same residue-level pair potential, and it turns out the 

the potential of mean force can only rank 19 out of 23 of the same native structure as being lower 

in terms of the total energy scores comparing with the misfolded structure. 

 

 

        For the multiple decoy set test, we also used the structures from the „R‟ Us decoy database. 

We calculated the rank scores and the RSMD for the lattice_ssft, 4state_reduced and lmds decoy 

sets that were generated using different methods. These multiple decoy sets have ranging from 

600 to 2000 incorrect structures (to be compared with the native/correct ones) for each protein 

that listed. As from the results reported in the previous section, we could see that  for lattice_ssft 

and 4state_reduced our potential could always rank the native structure as the No.1 lowest score, 

for more than half of the proteins listed. This turned out to be better than both the KT‟s four-state 

potential and MJ‟s potential of mean force (for the same residue levels). For those proteins listed 

that our potential failed to rank the native conformation as the No.1 lowest energy, our rankings 

were still consistently lower than the ranking that given out by MJ‟s potential of mean force. 

This results demonstrated that the improvement made by including the MHNC bridge function 

by using a predictor-corrector algorithm, or the Reverse Monte-Carlo method, could indeed 

improve the quality of  total energy prediction and the power of correct protein conformation 

selections. 

 

        For the lmds multiple decoy set, which was demonstrated to be a much uneasy one among 

the other multiple decoy sets that have been tested, our extracted pair potentials could still rank 3 

out of 10 listed proteins as the lowest energy scored ones. This result also better performed the 

KT‟s four body potential and the MJ‟s potential of mean force. For those proteins which our 

potential did not give the best rank for the native structure, the ranking scores from ours potential 

also improved the results from the KT‟s four body potentials.  
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        For the study of the variation of the total energy score with the RMSD of protein structures 

in multiple decoy sets 4state_reduced, we plotted the total energy scores calculated from our 

potential for the native (correct) structure (which has an RMSD value of 0Å) and the 

corresponding total energy scores for the decoy (incorrect) structures. Figures for these plots 

were given in the previous section. We consistently observed strong positive correlation for the 

RMSD values and the total energy scores: higher RMSD valued decoy structures were observed 

to have higher total energies, as given by our potential. These results were consistent with 

several other studies that conducted using the same multiple decoy set [68].    
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Chapter V. Summary 

 

 

        In this thesis, we have provided a novel method to extract pairwise interaction potentials 

between 20 types of amino acids. These extracted potentials can be further used to calculate the 

total energy scores of a given protein, and thus can be applied to structure predictions, and 

correct protein conformation selections.  

 

        Our potential, which was based on the previous knowledge of 996 known protein crystal 

structures from the Protein Data Bank (PDB), belongs to the general category of knowledge-

based protein potentials. This type of potential, in contrast to those so-called “physical-based” 

ones, normally use reduced structures for the protein geometry representation, and do not need 

quantum or other ab initial calculations that based on physical laws. These properties normally 

lead to much simpler models, and thus give shorter computing time for the model generation and 

validation. On the other hand, the knowledge-based potentials, since they need to use known 

protein crystal structures as input for parameters optimization and correction, will usually 

become dependent on the “knowledge” structures that being used at least to a certain extent. 

While this is not unusual for most knowledge-based model discovery types of problems, people 

working on this area tried to select complete, representative, and unbiased training set of protein 

as the “knowledge” structures to extract the features of the structure, so that these features, (as in 

this case, the radial distribution functions (RDFs) of our training sets), become robust and 

insensitive to any new training protein structures that added into or deleted from the set of known 

proteins.  

 

        Using these “knowledge” protein structures from the PDB, we were able to reduce them 

into residue-based points, where polypeptide bonds and other atomic/molecular details were all 

ignored. The obtained reduced structures were then used to extract the radial distribution 
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functions (RDFs) between each different pairs of the amino acids. Since the protein training set 

we used are all in high molecular weight (>1000 amino acid residues), we could assume that the 

residues are in thermodynamic equilibrium; therefore, these RDFs should be able to reflect the 

structural properties between the residues within a protein.  

 

        From the RDFs that generated from the training set, we were able to first generate the 

potential-of-mean-force for different pairs of residues (which was discussed in previous work 

from Miyazawa and Jernigans); and our work improved this idea by including the higher order 

terms of the Ornstein-Zernike equation and an iterative way to estimate the bridge function that 

were ignored by the potential of mean force. Technically, we were using an iteration that starting 

from the HNC approximation for the pair interaction potential, and in each of the follow step, we 

conducted Monte-Carlo simulations to generate the RDFs for the updated potential. Here, the 

updated potentials were calculated using two different ways: one way was using a “predictor-

corrector” algorithm in which the difference between the updated potential and the older 

potential from the previous step was generated by the difference of the RDFs in the two iteration 

steps; and then the difference, after some transformations and normalizations, was added to the 

previous step potentials as a “corrector”. The iteration ends when in the two consecutive steps, 

the RDFs, or the corresponding pair potential for the certain pairs of residues get converged 

(technically we calculated the Euclidean distance between the potentials in the two consecutive 

steps, and when this distance becomes less than our set up threshold, we treat the two potentials 

as the same, so that the iteration was assumed to be converged.) The other method, which 

basically share the same idea but computationally more effective, was called the Reverse Monte-

Carlo method. In this method we reconstructed the Hamiltonian in each iteration step after the 

Monte-Carlo simulation using the updated potential, and then structure factors were calculated to 

obtain coefficients, that were then used to solve a set of linear equations to get the corrections 

that needed to update the potential. Using both of these two ways, optimization of pairwise 

potentials could be obtained, in order for the RDFs of the final updated potential to become 

concordant with the ones that provided by the protein structures from our knowledge base. 
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        After these effective pairwise potentials were extracted for 210 different pairs of amino 

acids, we were able to sum up the individual ones to obtain the total energy score for known 

protein structure. We used the „R‟ Us single and multiple decoy sets to validate our potentials: 

results from these decoy set test shown that own extracted potential could successfully 

distinguish the native structure with lower total potential energy scores, compared with the 

misfolded one, for the single decoy test. For the multiple decoy test, our knowledge-based 

potential also out perform Miyazawa-Jernigan‟s potential of mean force and Krishnamoorthy and 

Tropsha‟s four body potential in terms of overall ranking scores. 

 

        From the above results, we could conclude that our work provided a new set of residue-

level effective potentials for protein potential energy calculation, and it could be successfully 

used for native protein structure selections and predictions. At the meanwhile, it provides a way 

that improves the Miyazawa-Jernigan‟s potential of mean force and Pliego-Pastrana‟s potential, 

which used the HNC and PY approximations to include to some extent the higher-order term 

information from the Ornstein-Zernike equation. Since an iterative way was used in this work, 

we could eventually obtain pair potentials between different types of amino acids that get 

concordant with the corresponding radial distribution functions that extracted from know protein 

structure training sets. Monte-Carlo simulation shown that our potentials could get back to the 

original RDFs that used as the starting point of the potential-of-mean-force calculations. Future 

works in this topic that we are planning to conduct includes using these extracted pair potentials 

to predict protein structures using Monte-Carlo simulations, and further optimization/validation 

of the potentials with different training sets. The eventual goal of this work is to be able to 

generate reasonable protein structure using this set of pairwise residue potential without input for 

the chain connectivity knowledge, which we are currently still working on. 
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